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Motivation

Goal: To help students make connections between high school
math and real world applications of mathematics.

Linear programming is based on a simple idea from
calculus.

We can connect calculus to real-world industrial problems.

We’ll explore the some basic principles of linear
programming and some modern-day applications.
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Continuous Functions on Closed Intervals
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What can we say about a continuous function on a closed
interval?
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Continuous Functions on Closed Intervals
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Theorem

If f is continuous on [a, b] then f attains both an absolute
minimum value and an absolute maximum value on [a, b].
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Continuous Functions on Closed Intervals
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Theorem

If f is continuous on [a, b] then f attains both an absolute
minimum value and an absolute maximum value on [a, b].
Further these occur at critical points of f or endpoints of [a, b].
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Linear Case

Theorem

If f is continuous linear on [a, b] then f attains both an
absolute minimum value and an absolute maximum value on
[a, b], and these occur at endpoints of [a, b].
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Higher-Dimensional Optimization
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What does this mean for a continuous function f (x , y) on a
closed and bounded plane region R?
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Higher-Dimensional Optimization
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Theorem

If f (x , y) is continuous on closed and bounded plane region R
then f attains both an absolute minimum value and an absolute
maximum value on R. Further, these values occur either at
critical points of f in the interior of R or on the boundary of R.
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Higher-Dimensional Optimization
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Theorem

If f (x1, x2, . . . , xn) is continuous on closed and bounded region
R ⊂ Rn then f attains both an absolute minimum value and an
absolute maximum value on R. Further, these values occur
either at critical points of f in the interior of R or on the
boundary of R.
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Higher-Dimensional Linearity
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Theorem

If f (x1, x2, . . . , xn) is linear on closed and bounded region
R ⊂ Rn defined by a system of linear constraints then f attains
both an absolute minimum value and an absolute maximum
value on R. Further, these values occur on the boundary of R.
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Higher-Dimensional Linearity
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Theorem

If f (x1, x2, . . . , xn) is linear on closed and bounded region
R ⊂ Rn defined by a system of linear constraints then f attains
both an absolute minimum value and an absolute maximum
value on R. Further, these values occur on corner points of the
boundary of R.
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Higher-Dimensional Linearity
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Example: A possible feasible region f (x , y , z) = ax + by + cz
subjuect to 5 linear constraints.

A solution to minimize f over this region will occur at a corner.
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Linear Programming

The Simplex Method was developed by George Dantzig in
1947.

“programming” synonymous with “optimization”.

Algorithm to traverse the corner points of the feasible
polyhedron for a linear programming problem to find an
optimal feasible solution.

Standard form for a linear programming problem:

min xTc such that Ax ≤ b and x ≥ 0. (1)

x, c ∈ Rn,b ∈ Rm,A ∈ Rm×n - n variables and m constraints.
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Simplex Method

min xTc such that Ax ≤ b and x ≥ 0.

For each constraint (row i of A), add a new slack
variable yi .

New system: min xTc such that [A + I ]

[
x
y

]
= b,

x ≥ 0, y ≥ 0.

Underdetermined (more variables than equations). A + I

The slack now in the system is the key.

Each slack variable is associated with a constraint
boundary
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Simplex Method

Simplex algorithm:

Split entries of

[
x
y

]
into 2 subsets:

Basic variables: xB ∈ Rm (non-zero valued)
Non-basic variables: xN ∈ Rn (zero valued)
Represents a corner point of the feasible region.

If not optimal, move to an adjacent corner point by
swapping one entry in xB with one entry in xN and
re-solving the system of equations.
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Simplex Geometry
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Figure: Feasible Region

Example: min f (x1, x2, x3) = ax1 + bx2 + cx3 subject to 5 linear
constraints.
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Simplex Geometry
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Example: min f (x1, x2, x3) = ax1 + bx2 + cx3 subject to 5 linear
constraints.

Choose initial basis to correspond to the origin.
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Simplex Geometry
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Example: min f (x1, x2, x3) = ax1 + bx2 + cx3 subject to 5 linear
constraints.

If the objective function is not optimal, move to a better
adjacent corner.
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Simplex Geometry
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Example: min f (x1, x2, x3) = ax1 + bx2 + cx3 subject to 5 linear
constraints.

Repeat until the objective function is minimized (no remaining
adjacent corners will reduce it).
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Application: Shipping Network
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Shipping Problem

K warehouses: S1,S2, . . . ,SK

L retail locations: D1,D2, . . . ,DL

Cost to ship x amount of product from Si to Dj is cijx

Warehouse Si can supply si amount of product

Retail location Dj demands dj amount of product

Problem: Design a shipping schedule that satisfies demand
at all retail locations at a minimal cost.

Example: As of July 2017, Target Corp. has 37
distribution centers and 1, 802 stores.
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Shipping Problem Mathematical Model

Constraints

xij ≥ 0 - amount of product shipped from Si to Dj

Amount leaving Si : xi1 + xi2 + · · ·+ xiL ≤ si

Amount entering Dj : x1j + x2j + · · ·+ xKj = dj

Objective

Total cost of shipping schedule:
K∑
i=1

L∑
j=1

cijxij

Minimize cost of shipping such that demand is satisfied

Target example: 37× 1, 802 = 66, 674 variables
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Shipping Problem Mathematical Model

Amount leaving Si : xi1 + xi2 + · · ·+ xiL ≤ si

Amount entering Dj : x1j + x2j + · · ·+ xKj = dj

A =



1 . . . 1

1 . . . 1
. . .

1 . . . 1

I I I



min
K∑
i=1

L∑
j=1

cijxij such that Ax
≤
=

[
s
d

]
, x ≥ 0.
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